题目描述
给定一个数组nums,可以将元素分为若干个组,使得每组和相等,求出满足条件的所有分组中,最大的平分组个数。
输入描述
第一行输入 m
接着输入m个数,表示此数组
数据范围:1<=M<=50, 1<=nums[i]<=50
输出描述
最大的平分组数个数
用例
输入 | 7 4 3 2 3 5 2 1 |
输出 | 4 |
说明 |
可以等分的情况有: 4 个子集(5),(1,4),(2,3),(2,3) 2 个子集(5, 1, 4),(2,3, 2,3) 最大的平分组数个数为4个。 |
输入 | 9 5 2 1 5 2 1 5 2 1 |
输出 | 4 |
说明 |
可以等分的情况有: 4 个子集(5,1),(5,1),(5,1),(2,2,2) 2 个子集(5, 1, 5,1),(2,2, 2,5,1) 最大的平分组数个数为4个。 |
题目解析
本题和
华为机试 – 叠积木_伏城之外的博客-CSDN博客_叠积木 算法
华为机试 – 等和子数组最小和_伏城之外的博客-CSDN博客
属于类似,解题步骤基本相同。
题解请看leetcode划分划分k个相等子集。
JavaScript算法源码
/* JavaScript Node ACM模式 控制台输入获取 */
const readline = require("readline");
const rl = readline.createInterface({
input: process.stdin,
output: process.stdout,
});
const lines = [];
rl.on("line", (line) => {
lines.push(line);
if (lines.length === 2) {
const m = lines[0] - 0;
const arr = lines[1].split(" ").map(Number);
console.log(getResutlt(m, arr));
lines.length = 0;
}
});
function getResutlt(m, arr) {
const sum = arr.sort((a, b) => b - a).reduce((p, c) => p + c);
let maxCount = m;
while (maxCount >= 1) {
if (canPartition([...arr], sum, maxCount)) {
return maxCount;
} else {
maxCount--;
}
}
}
function canPartition(arr, sum, maxCount) {
if (sum % maxCount) return false;
const subSum = sum / maxCount;
if (subSum < arr[0]) return false;
while (arr[0] === subSum) {
arr.shift();
maxCount--;
}
const buckets = new Array(maxCount).fill(0);
return partition(0, arr, subSum, buckets);
}
function partition(start, arr, subSum, buckets) {
if (start === arr.length) return true;
const select = arr[start];
for (let i = 0; i < buckets.length; i++) {
if (i > 0 && buckets[i] === buckets[i - 1]) continue;
if (buckets[i] + select <= subSum) {
buckets[i] += select;
if (partition(start + 1, arr, subSum, buckets)) return true;
buckets[i] -= select;
}
}
return false;
}
Java算法源码
import java.util.LinkedList;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int m = sc.nextInt();
LinkedList<Integer> link = new LinkedList<>();
for (int i = 0; i < m; i++) {
link.add(sc.nextInt());
}
System.out.println(getResult(link, m));
}
public static int getResult(LinkedList<Integer> link, int m) {
link.sort((a, b) -> b - a);
int sum = 0;
for (Integer ele : link) {
sum += ele;
}
while (m >= 1) {
LinkedList<Integer> link_cp = new LinkedList<>(link);
if (canPartitionMSubsets(link_cp, sum, m)) return m;
m--;
}
return 1;
}
public static boolean canPartitionMSubsets(LinkedList<Integer> link, int sum, int m) {
if (sum % m != 0) return false;
int subSum = sum / m;
if (subSum < link.get(0)) return false;
// while (link.get(0) == subSum) {
while (link.size() > 0 && link.get(0) == subSum) {
link.removeFirst();
m--;
}
int[] buckets = new int[m];
return partition(link, 0, buckets, subSum);
}
public static boolean partition(LinkedList<Integer> link, int index, int[] buckets, int subSum) {
if (index == link.size()) return true;
int select = link.get(index);
for (int i = 0; i < buckets.length; i++) {
if (i > 0 && buckets[i] == buckets[i - 1]) continue;
if (select + buckets[i] <= subSum) {
buckets[i] += select;
if (partition(link, index + 1, buckets, subSum)) return true;
buckets[i] -= select;
}
}
return false;
}
}
Python算法源码
# 输入获取
m = int(input())
link = list(map(int, input().split()))
# 算法入口
def getResult(link, m):
link.sort(reverse=True)
sumV = 0
for ele in link:
sumV += ele
while m >= 1:
if canPartitionMSubsets(link[:], sumV, m):
return m
m -= 1
def canPartitionMSubsets(link, sumV, m):
if sumV % m != 0:
return False
subSum = sumV / m
if subSum < link[0]:
return False
while len(link) > 0 and link[0] == subSum:
link.pop(0)
m -= 1
buckets = [0] * m
return partition(link, 0, buckets, subSum)
def partition(link, index, buckets, subSum):
if index == len(link):
return True
select = link[index]
for i in range(len(buckets)):
if i > 0 and buckets[i] == buckets[i - 1]:
continue
if select + buckets[i] <= subSum:
buckets[i] += select
if partition(link, index + 1, buckets, subSum):
return True
buckets[i] -= select
return False
# 算法调用
print(getResult(link, m))
免责声明:
1、IT资源小站为非营利性网站,全站所有资料仅供网友个人学习使用,禁止商用
2、本站所有文档、视频、书籍等资料均由网友分享,本站只负责收集不承担任何技术及版权问题
3、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除下载链接并致以最深的歉意
4、本帖部分内容转载自其它媒体,但并不代表本站赞同其观点和对其真实性负责
5、一经注册为本站会员,一律视为同意网站规定,本站管理员及版主有权禁止违规用户
6、其他单位或个人使用、转载或引用本文时必须同时征得该帖子作者和IT资源小站的同意
7、IT资源小站管理员和版主有权不事先通知发贴者而删除本文
评论0